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Abstract. Transition state thebry 3s developed for chemical reactions is vansferred to ballistic 
electrons. The phase-space flux through the vansition s m e  is related to the conductance. Steps 
in the conductance follow from a semiclassical Etension of this formula. Tunnelling corrections 
have to be included to yield the rounding of the steps. A magnetic field causes a sharpening of 
the steps and finite temperam an additional broadening. The calculation also shed some light 
on the abilities and limitations of the semiclassical approach. 

1. Introduction 

Investigations of two-dimensional ballistic electron gases have revealed a number of 
phenomena on the borderline between classical and quantum mechanics. Among them are 
the focusing of electrons in magnetic fields 111, conductance fluctuations [2], quantization 
of conductance [3,4], non-additivity of resistance 1561 and periodic orbit modulations in 
magnetoresistance [7]. Since the dimensions of the systems are often just a few de Broglie 
wavelengths they are natural testing groun&,for concepts in semiclassical physics. Because 
of the relationship between the scattering matrix and the Landauer-Biittiker formula for 
transmission [8,9] considerable attention has been paid to the statistical properties of the 
S-matrix [2,10], especially in the case of irregular scattering [ll]. 

The models used for transmission of electrons through a channel have a close 
resemblance to models of reactive scattering in chemistry [12,13]. The equivalent of a 
reaction is an electron passing through the channel. Most studies in the chemical physics 
literature have focused on one-dimensional channels in two-degree-of-freedom systems. 
In the case of chemical reaction models this restriction applies to collinear three-particle 
geometries only, but for ballistic electrons it is correct within the independent electron 
picture due to the lateral confinement. The ballistic electron models thus provide a rather 
direct illustration of ideas developed earlier [12,13]. 

The aim of this paper is to translate the formalism of transition state theory to electron 
conductance and~to derive a formula for the transmission through a channel. In the case 
of a channel with a single constriction this formula can be evaluated to three levels~ of 
approximation: classically, to leading-order in a stationary phase approximation and to 
higher-order including tunnelling corrections. In the latter case we can improve a formula 
first obtained by Miller [14] for the positions and the widths of the resonances in scattering. 
The present investigation will also shed some light on the accuracy with which semiclassical 
methods can be expected to work in the case of ballistic conductance. 

The outline of the paper is as follows. In section 2 conductance will be related to 
classical fluxes and phase-space densities of states, thus preparing for the direct semiclassical 
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analysis of section 3. The extension to a channel in a magnetic field is discussed in section 4. 
Some final comments, in particular on cases with irregular scattering, are given in section 5. 

2. Classical transmission 

Consider the idealized geometry for a transmission measurement shown in figure 1. Two 
eleceon reservoirs at chemical potential pL and p~ are connected by a two-dimensional 
narrow wire with a constriction. It is assumed that the mean free path of the electron 
is larger than the size of the wire, and reservoirs do not reflect electrons before they are 
thermalized. Because of the difference in chemical potential there is a flux of electrons 
across the wire, inhibited only by the current-canying capacity of the constriction. The 
ratio of the current, given by the flux multiplied by the charge, to the difference in potential 
is the conductance, or, more precisely since no dissipation is involved, the transmission. 

Figure 1. Transmission through a channel. Electrons move fhrough the channels as idealized 
mass points, free of inelastic scaue"ng. A constriction is modelled by a narrowing of the equi- 
energy contours. Some elect" pass thmugh the constriction (full curve) and some are reflected 
back (broken curve). Far from the constriction, inelastic scattering equilibrates the electrons to 
the chemical potentials p~ and p~ of the reservoirs. 

To determine the electrical current we need the number of electrons crossing from 
one side of the constriction to the other. To achieve this we count the electrons crossing 
a line x = XO. Allowing for different momenta perpendicular to this line, the number 
of electrons at a fixed energy is obtained by integrating the phase-space flux density 
S(x - xo)vx = S(x - .q)pr/m over all positions and momenta: 

F ( E )  = 1 dx dy dp, dp, S(E - H)S(x  - X O ) ~ W = P , ) X ( ~ ,  Y. pX, pr). (1) 

The step function 0 selects the direction of the current; both signs yield the same value. 
The characteristic function x selects the trajectories contributing to the current: it equals 
one on all trajectories which live on different sides of the channel for t -+ fw, and zero 
for the others. 

The rate of transition from one side of the channel to the other is obtained by integrating 
the product of F(E) with the density of states and the occupation probability over all 
energies. Here the density of states is 2/h2, because there are two spin directions per 
quantum cell of size hZ. The occupation probability is given by the Fermi-Dirac statistics 
at temperature T and chemical potential p.: 

m 

Thus, the transition rates become 

(3) 
2 

4p.I = 1 dE g f ( E .  p.)F(E). 

Electrons can cross the channel in both directions. However, since there are different 
chemical potentials on the sides p~ and p . ~  respectively, these fluxes do not cancel. The 
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observed current is the difference in the rates of electrons going from left to right and from 
right to left, multiplied by the charge e: 

I = e ( w W  - NPR)). (4) 

Expanding around the Fermi energy EF = ( p ~  i- p ~ ) / 2  to first order in the differences of 
the chemical potentials and taking into account that this difference is charge multiplied by 
electrical potential drop, p~ - p~ = eU,  one finds for the conductance that 

For very low temperature the derivative of the Fermi-Dirac distribution becomes a 
8-function so that the conductance is related to the microcanonical flux at the Fermi energy: 

The quotient F ( E ) / h  is dimensionless and counts the number of open channels by an 
adiabatic approximation. 

3. Transition states 

In the above formula we determine the current through the plane x = 0 in phase space. 
Actually, the formula holds true for any surface which divides phase space, and the step 
function selects the required electron trajectories, asymptotically crossing the barrier. If we 
wish to approximate the integral by eliminating the step function then, of course, a good 
choice of the surface becomes mandatory [15]. Evidently, one would like to minimize 
the number of backscattered trajectories (see figure 1). Surfaces which minimize the 
transmission are called transition states. 

Vlx,yl= E 

Figure 2. Periodic orbit dividing surface. As explained in the text every dividing surface amss 
the chhannel has a point on the boundary V(z) = E of the classically allowed region. Moving 
dona the boundary, there is (in this geometni) exactly one orbit that connects the two boundaries 

As the many detailed studies of Pollak, Pechukas and Child 116,171 have shown, a good 
choice of surface of section is a periodic orbit dividing surface (PODS), i.e. a surface spanned 
by a trajectory connecting the equipotential boundaries. In brief, the idea. is as follows. At 
the equi-energy contours, phase space becomes one-dimensional since all energy is absorbed 
by the potential energy and all momenta vanish. Thus, every dividing surface must have 
points on the qui-energy contours. Furthermore, the surface~should be spanned by an orbit 
since this eliminates the possibility of trajectories being tangential to it. As shown in figure 2 
for the geometry of figure 1, all trajectories started at points along the boundary will leave 
through a point on the other side, except for the one in the centre; this is the only orbit 
connecting both equipotential contours and the motion along it is periodic. Since motion 
along all classical orbits connecting two equi-energy contours is periodic, these transition 



3412 B Eckhardt 

states are also called PODS. In the particular case of figure 2, the PODS lives along one of 
the coordinate axes and the integral for F ( E )  can be performed easily: 

F ( E )  = dy dpy @ ( E  - H(x = XO. p x  = 0, Y. P,)) 

(7) 

J 
= $pdp. 

The second form of the integral is just the action of the periodic orbit; this clearly gives a 
flux smoothly increasing with energy. 

If there are several transition states, then the one with minimal action is a minimal upper 
bound on the flux crossing the channel. If there is just one surface, then it is not just an 
upper bound but is exact [15,16]. 

4. Quantization of the conductance 

Since the action of a periodic orbit in a smooth potential changes continuously with energy, 
the preceding calculations do not give steps in the conductance. To find these, one has to 
improve the density of states and take into account modulations due to classical periodic 
orbits 1181. Therefore, the local phase-space density p&, x )  = 6(E - X ( p ,  x)) of 
equation (1) has to be replaced by the corresponding quantum mechanical expression which 
may be obtained from a Wigner transform of Green's function: 

pqm(p ,  x) = /" dx'e-ipd/" -- h G ( x  + ~ ' 1 2 ,  x - x'/2; E )  ] . (8) 

In this formula and in many of the others below, taking the imaginary part is a reminder to 
include a small imaginary part to the energy E = E' + ic and to take the limit of vanishing 
E .  The usual representation of the density of states in energy S(E - H) = -ImTrG/x 
can be obtained by integrating over all positions and momenta and dividing by hZ (the 
phase-space volume of one state). 

When substituted in the phasespace flux (I), one finds that for a transition state at 

I f :  

xo = 0 
1 P x  

h h m  dpdxdx' ---G(x)e-'dlhG(x + ~ ' 1 2 ,  x - x'/2; E).  

Performing the integrations on x ,  py and y, one finds 

A semiclassical expression for Green's function G(XZ.XI; E )  can be obtained from 

G(zz. XI ;  E )  = I- dt (xzle-ixt/hlxl)e'E'F (11) ,; 1- 
by approximating the propagator by classical trajectories travelling from xi to xz in time 
t :  

Here, W is the Lagrangian action 

W = L ' L ( x , S ) d t  = s,: pdz - Et 
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(with L Lagrange’s function) which may also be expressed in terms of Hamilton’s action 
S = f p d q  and the energy E at which the trajectory runs. DW is the matrix of second 
derivatives 

and p counts the number of caustics encountered along the path. 
The integrals that appear when these expressions are substituted in equation (10) are 

evaluated in stationary phase. As a function of x’ the phase is stationary for x‘ = 0, and 
as a function of y one finds the condition that the initial and final y-components of the 
momentum must coincide: 

a 
--S((O, y). (0, Y)) = pyliniw - ~ y l f i n a ~  = 0. 
ay 

(15) 

This is just the condition for periodic motion in the y-direction at x = 0, i.e. at the transition 
State. 

In the neighbourhood of the trajectory for small x‘, one can connect the action 
S((-x‘/2, y), (x‘/2, y)) with the linearization of motion perpendicular to the trajectory 
1181. A small deviation 8% = (Sx, Sp,) perpendicular to the trajectory will be mapped 
after one period T, into 8%‘ = M S z  with a symplectic 2 x 2 matrix M .  The eigenvalues 
e*= of this matrix are independent of the position along the orbit and are real for unstable 
orbits. If one factorizes the stability exponent into U = AT, with T, the period and A 
the Lyapunov exponent for motion in the y-direction, then one can approximate the motion 
in x by that over an inverted parabola with effective Hamiltonian i? = (b: - A21?2)/2. 
This correctly describes the action perpendicular to the trajectory up to second order in 
the deviations. Since the propagator only contains the actions, the precise form of (j, 2 )  
and of the Hamiltonian i? are irrelevant. We thus have the important result that in the 
neighbourhood of the trajectory, motion is separable into a periodic motion and an unstable 
motion perpendicular to it. It is this separability that allows one to proceed further along 
the lines of Gutzwiller [18]. 

For separable motions the propagator factorizes and Green’s function becomes a 
convolution of the Green functions G, and G ,  for motion in the x and y directions: 

G ( z 2 ,  I,; E )  = : dt (z21e-iHtl*lzl)~K’/n 

=-/ dE, GAXZ, X I ;  EJG,(Yz, YI; E - Ed. 

,; 1- 
(16) 

Upon substitution into (10) one obtains a convolution of the density of states at the transition 
state and a flux D~ perpendicular to it: 

FO = /dEz p,(E - E,)D(E,) h 

with 

p,(E) =--f.ImTrG, H (18) 

and 

x‘/2; E)e-ipx””‘“. (19) 
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As long as only real trajectories are admitted, the flux across a I D  barrier, as represented 
by the inverted barrier, equals one if the energy is above the barrier and zero otherwise. 
One is thus left with an integral over the density of states in the transition state: 

p y ( E )  = --Im- / d y l m d t  (yle-iHy'/hly)e'Er/fi. 
n iA  

For short times one has to substitute the exact propagator which yields the mean density of 
states (also known as the Thomas-Fermi term): 

where Ts is the period of the y-motion. The periodic motion conizibutes at every return, 
whence 

Expressing po in the form 

one can combine both expressions to find 

In evaluating this formula one again has to keep in mind that a small positive imaginary 
part E has to be added to the energy and that the limit of vanishing E has to be taken. The 
flux F(E)/h thus equals the total number of states above the barrier [19,20]: 

1. (25) - F ( E )  - - -_ ~~l~~ (e-inS,(E)/h - $nS,(E)/h-iva/Z 
h R 

In smooth potentials with two turning points the Maslov index is v = 2 so that the argument 
of the logarithm becomes Zcos(xSy(E)/h) and real, and so F ( E )  = constant. However, 
at the zeros of the cosine the phase jumps by E ,  resulting in jumps of F(E)/h by one. The 
zeros of the cosine are given by the semiclassical quantization rules for periodic motion on 
the transition state, Sy(En) = (n + 1/2)h. If @ ( E )  denotes the step function one can finally 
write 

Thus, the conductance increases in steps whenever a new state fits into the transition state. 
According to this theory the steps are sharp in the microcanonical representation, the only 
possible source of smoothing being temperature effects in the average (5). 

A quantum mechanical rounding of the steps at fixed energy arises from tunnelling 
corrections. Semiclassically, this requires inclusion of complex trajectories. For an inverted 
parabola -A2x2/2 with maximum at E = 0, the flux then becomes 

(27) , , ,, , , , ., . . , ,. , , , 
1 

1 + e-dE) D ( E )  = 
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(28) 

This is very small for k E  e frA and approaches one for 2 z E  z frA. Convoluted with 
the density of states in y this means that every step @ ( E  - E,) has to be replaced by 
D ( E  - E.). 

When separating the propagator for the x -  and y-motion it was tacitly assumed that the 
instability of the trajectory did not change with energy, i.e. the x-motion was independent 
of the y-motion; however, as the preceding discussion shows, only a small interval of 
the energy around the threshold E, is important. It is, therefore, reasonable to substitute 
the Lyapunov exponent at that particular energy. One then arrives at the formula for the 
conductance in a smooth potential with two turning points: 

together with the semiclassical quantization condition for the transition state: 
&(E,) = (n + l / W .  (30) 

This kind of problem was previously considered by Miller [14]. However, he does not 
include the mean density of states in his discussion and, furthermore, arrives at a result with 
approximations interchanged: the harmonic approximation is applied to the motion along 
the transition state, whereas the full tunnelling integral is taken. Both forms are useful 
depending on the rate with which the tunnelling integral and the action of the transition 
state are changing; the one deviating most from a harmonic approximation should be kept. 
For instance, in the case of the ballistic channel the tunnelling through the barrier may be 
approximated harmonically if the constriction is  sufficiently smooth. The steps are then 
sufficiently sharp to be isolated and the non-harmonicity of the transition state may be 
detected. 

The typical qualitative behaviour of the conductance is illustrated by a harmonic barrier 
with Hamilton function 

H ( p ,  I) = $(p: + p: + 0 2 y z  - A2x2).  (31) 
The steps are equidistant with a spacing fro and a width depending on the Lyapunov exponent 
A [Zl]. Representative conductance curves are shown in figure 3. Similar curves are also 
found in other geometries, e.g. see [22-241. 

It was convenient for the calculation to assume a linear transition state, but since the 
semiclassical results only depend on properties invariant under canonical transformations 
(actions and stabilities) the above results are valid more generally: the position of the steps 
is given by the quantization of the action of the transition state and the width is determined 
by the Lyapunov exponent. 

5. Magnetic fields 

Magnetic fields perpendicular to the plane of the electron gas. can also change the 
conductance.. Because of the Lorentz force a Larmor precession is superimposed onto 
the linear motion so that the transition state will not usually be a straight line in position 
space; it will still be a periodic orbit. This is easiest to see for an analytically solvable case, 
which for a parabolic saddle which without magnetic field is described by 

2 
H = -  '' " - m A2x2/2 + mo23j2. 

2m 
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Figure 3. Conductance pioned against energy in a parabolic constriction for different Lyapunov 
exponents A. For better visibiliry the curves are displaced to the right, corresponding to a shift 
in the energy of the saddle. 

Without a magnetic field the general motion is the superposition of an oscillation in y and 
an exponential escape in x .  The transition state is obviously the motion in the y-direction. 
With magnetic field, motion can again be described as a superposition of an oscillation and 
an exponential runaway, but with different frequencies and new eigendirections in phase 
space. 

The equations of motion for a particle of mass m and charge e in this potential and a 
magnetic field (0, 0, b) are 

(33) X = - 0 0 i  + A2x j ;  = 00.t - 02y 

where the magnetic field appears in the Larmor frequency 00 = e B / m .  The exponential 
ansatz x ( t )  = eArxO, and similarly for y, leads to the characteristic equation 

(hZ - A ~ ) ( A ~  + J) + = o (34) 

(35) 

with eigenvalues 

A; = 4 2  i JzLm 
where Q = (02 + oi - K2) /2 .  Since A: is always positive it describes an exponential 
runaway which approaches the x-motion for vanishing magnetic field. Similarly, the 
negative A? describes an oscillatory solution which goes over into the y-motion in the field- 
free case. Kccording to [=] it is always possible to perform a canoncial transformation to a 
normal form (32) with new frequencies A' = A+ und 0' = A?. Thus, the field-free old 
topology is recovered and one can use the results of the preceding section to characterize 
the conductance. The spacing between two steps is given by AE = ha' and their widths 
is hi'. From this, it follows that the steps become sharper with increasing magnetic field 
both relative to the spacing (AElwidths = o-/A+ + 00) and also in absolute terms (since 
A+ - oAjo0 4 0). 

The normal form cannot be achieved by a point transformation alone, so that the periodic 
orbit of the transition state becomes an ellipse in configuration space (figure 4). However, 
the change in coordinates is still linear, so that it can be transferred to quantum mechanics; 
the quantum problem in a parabolic barrier in a magnetic field is exactly solvable [26]. 

In non-harmonic potentials the transition state has to be found numerically. In general, 
this will require a ZD search in initial conditions. However, if the potential still has a mirror 
symmetry across an axis, e.g. the x-axis V ( x ,  y) = V ( x ,  -y), then one may again search in 
just one dimension, similar to the case without a magnetic field. Starting perpendicular to 

J- 
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Figure 4. Transition state in a parabolic M e r  for different magnetic fields (increasing 
from left to right). Without a magnetic field the PODS is a straight line mnnecting the two 
equipotential contours (left). Form increasing magnetic field it becomes elliptic (not touching 
the equipotential contour) and shrinks to a point for very large fields. 

the x-axis, three coordinates are fixed (no, y = 0 and pr = 0). the final one following from 
energy conservation. One now moves the initial condition until the trajectory returns exactly. 
This shows that the picture remains qualitatively unchanged unless the orbit bifurcates, in 
which case the flux calculated from this transition state is only an upper bound. 

6. Concluding remarks 

The models studied here are rather simple, with all classical trajectories either being reflected 
or smoothly crossing over the barrier. This allows us to evaluate the phasespace flux 
formula and the conductance solely in terms of classical quantities at the periodic orbit 
dividing surface and to include the tunnelling corrections. In more complicated cases the 
flux formula provides an upper bound. The tunnelling width may still be calculated but its 
relevance is less clear. 

It is instructive to compare the present approach to others, in particular to the Landauer- 
Biiniker formula which relates transmission to scattering. There exists a well developed 
semiclassical theory for S-matrix elements which may be used to evaluate the conductance. 
The individual S-matrix elements are represented by superpositions of classical trajectories 
connecting ingoing and outgoing states. Via the Landauer-Biittiker formula, the conductance 
is obtained as the sums of the absolute values squared of suitably normalized S-matrix 
elements. This presentation allows for interference between contributions and is capable 
of producing conductance fluctuations. However, in the case of a single constriction the 
approach presented here is clearly superior in that all information is obtained from the 
transition state; moreover, tunnelling corrections can be included. It would be interesting 
to compare the two approaches quantitatively as this should shed light on the accuracy of 
the semiclassical approximation in general. 

If the model is more complicated and the classical trajectories show backscattering, 
then the phase-space formula obviously only provides an upper hound on the flux, the 
reason being that not every point in the Poincar6 surface of section at the transition state 
corresponds to a reactive trajectory. Numerical calculations for several systems indicate that 
the set of points leading to a reaction is a fat fractal [27]. The characteristics of a fat fractal 
are that it has a finite area SO, but that this area is approached nonlinearly with the resolution 
6 of the boxes with which it is measured, i.e. S(E)SO + SI&'. The primitive semiclassical 
quantization which leads to the steps corresponds to a simple quantization of the area of 
the transition state, namely equation (U). If the area is a fat fractal then one can speculate 
that there will be nonlinear corrections to the average classical trend, just as in the formula 
for the density of states of a fractal drum [28,29]: if one assumes that Planck's constant 
h sets the scale with which the flux-carrying area is measured, then as a function of h at 
fixed energy the average conductance will be proportional to So f h + S,hP-'. Calculations 
for simple billiard geometries suggest that SI/SO may be small and/or p may be close to 
one so that the second term is masked by the quantum fluctuations. 
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